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Abstract

We provide a practical toolkit for analyzing effect heterogeneity in event studies. We
develop an estimation algorithm and adapt existing econometric results to provide its the-
oretical justification. We apply these tools to Dutch administrative data to study individual
heterogeneity in the child-penalty (CP) context in three ways. First, we document signif-
icant heterogeneity in the individual-level CP trajectories, emphasizing the importance of
going beyond the average CP. Second, we use the individual-level estimates to examine
the impact of childcare supply expansion policies. Our approach uncovers nonlinear treat-
ment effects, challenging the conventional policy evaluation methods constrained to less
flexible specifications. Third, we use the individual-level estimates as a regressor on the
right-hand side to study the intergenerational elasticity of the CP between mothers and
daughters. After adjusting for the measurement error bias, we find the elasticity of 24%.
Our methodological framework contributes to empirical practice by offering a flexible ap-
proach tailored to specific research questions and contexts. We provide an open-source
package (’unitdid’) to facilitate widespread adoption.
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1 Introduction

Event study analysis is ubiquitous in empirical economics. In a typical application, researchers
start with assumptions that describe the behavior of a comparison group that was not affected
by the event of interest and then use econometric methods, most commonly Difference-in-
Differences (DiD), to quantify the effect of the event itself.1 In practice, these effects tend
to vary across units, and to summarize them, researchers report estimates for the average
effect. However, many economic questions require us to go beyond reporting the averages and
investigate the underlying heterogeneity in more detail. This is the objective we pursue in the
paper.

We provide a practitioner’s toolkit for analyzing unit-level effect heterogeneity in event
studies where the outcomes for the comparison group follow a conditional two-way fixed-
effect model.2 We develop an estimation algorithm and adapt existing econometrics results
to provide its theoretical justification. We apply the newly developed tools to study hetero-
geneity in child penalties (CP)3. Our algorithm delivers individual-level measures of the CP,
which we use for three tasks. First, we document considerable observed and unobserved het-
erogeneity in the CP and discuss how its magnitude varies across different subpopulations.
Second, we show how to use the individual-level CP estimates to investigate the economic
effect of childcare provision policies on the CP. We demonstrate that our approach produces
qualitatively and quantitatively different results than the policy evaluation methods currently
used in the literature. Finally, we show how to use the estimated individual-level CP to study
the intergenerational persistence in the CP.

Our proposal is based on a simple observation that has a long history in the econometric
panel data literature (Chamberlain, 1992; Bonhomme and Sauder, 2011; Arellano and Bon-
homme, 2012). Suppose we compare a given unit before and after the event to an average
of appropriate control units. As long as we expect the parallel trends assumption to hold,
this comparison delivers an unbiased, though noisy, estimator for unit-level effects. We rec-
ommend that researchers directly use these unit-specific measures in the regression analysis,
either as a left-hand side (LHS) variable, which is relevant for studying heterogeneity with re-
spect to observables and conducting policy evaluation exercises, or as a right-hand side (RHS)
variable, which is applicable, for example, in intergenerational questions.

One immediate concern with our recommendation is that the constructed unit-specific
measures are noisy, and the regression-based analysis based on such variables can potentially

1Often, researchers interpret the result of this exercise as causal evidence, but our analysis does not rely on
this interpretation.

2See our publically available R package at: https://github.com/kazuyanagimoto/unitdid
3In their influential paper, Kleven et al. (2019b) coined the term "child penalty" to describe the differential

career and earnings losses incurred by women compared to men after having children.
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suffer from a measurement error bias. We show that this bias does not appear when we put
the estimates on the LHS and use them for policy analysis as long as we restrict attention to
policies that vary across prespecified subpopulations of units and periods. For example, this
is the case in our empirical application, where the childcare provision policy varies geograph-
ically. Intuitively, when analyzing such policies, we need to aggregate unit-level estimates to
the level of the policy variation, and this aggregation eliminates the measurement error.

The situation is different when we put the noisy estimates on the RHS, with the measure-
ment error leading to the familiar attenuation bias. We show how to adjust for this bias by
using the information from the comparison group. This adjustment relies on a generalization
of the parallel trends assumption. In particular, we require the means and variances of the ap-
propriately transformed outcomes to be stable across event times. Similar to the conventional
parallel trends, this assumption has testable implications, and we validate it in the context of
our empirical application.

We apply our method to study CP in the Netherlands. We utilize a comprehensive dataset
from Statistics Netherlands (CBS), encompassing various sources, including municipality reg-
isters and tax records, all linked through anonymized identifiers. Our primary data comes
from employer-employee monthly records from 1999 to 2016, detailing employment statuses
and wages. We merge demographic information about birth year, gender, timing of parent-
hood, and education records on the highest diploma obtained.

We start our empirical analysis by constructing the individual-specific CP estimates. We
conduct a naive exploratory analysis to understand the variation in estimates, ignoring mea-
surement errors. Clustering individuals into three groups based on their estimated CP trajecto-
ries reveals significant differences in labor market trajectories after childbirth for both fathers
and mothers. These findings suggest averaging CP across the entire population may obscure
substantial individual-level differences. Observable individual characteristics and the timing
of childbirth can explain part of the variation in the estimated CP. To investigate this dimen-
sion, we project the individual-level estimates on birth cohort and age at first childbirth fixed
effects. We find that while the CP diminishes over successive birth cohorts and with older ages
at first childbirth, the variability within these groups underscores a critical selection effect tied
to the timing of parenthood.

We continue our analysis by investigating the role of childcare provision in labor supply
by examining childcare service data and availability across municipalities. We focus on labor
market outcomes surrounding the first childbirth from 2000 to 2022, aiming to assess the im-
pact of a 2005 childcare provision expansion policy on the CP. We find a nonlinear treatment
effect of childcare provision expansion on almost all margins, groups, and years post-birth.
For example, the most striking nonlinear effects are evident for the fathers’ labor-force partic-
ipation. These U-shaped effects suggest that an expansion of childcare has a greater impact
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on the father’s labor supply when the baseline availability of childcare is low. However, in
higher levels of baseline childcare, a childcare expansion can also improve father’s labor-force
participation.

These childcare provision expansion policies have been recently studied, finding a wide
range of empirical evidence (Rabaté and Rellstab, 2021; Andresen and Nix, 2022a; Kleven
et al., 2022; Lim and Duletzki, 2023; Castellanos, 2024). Compared to the standard analysis
in the literature, we approach this question in a much more flexible way, again demonstrating
the strength of our method. Typically, both the CP and their reaction to policies are estimated
within a single regression which is augmented with pre-post policy indicators interacted with
binary measures of exposure. Such specifications raise several concerns. First, in practice, the
effect of the policy is often mediated through a continuous measure (e.g., childcare provision).
In this case, binary exposures ignore important information that we can directly use. This is
particularly important if we suspect the effect of the policy is nonlinear. Second, standard
specifications abstract away from dynamic effects, which can be important in applications.
Finally, these specifications suffer from aggregation issues highlighted recently in the literature
on multiple treatments (Goldsmith-Pinkham et al., 2022).

In theory, these issues can be addressed by specifying a regression model that incorporates
dynamics and nonlinearity and using an estimation method that accounts for potential ag-
gregation issues. In practice, there are several advantages in separating the two exercises –
construction of unit-level estimates and policy evaluation – rather than implementing them in
a single step. For example, applied researchers often consider different specifications in their
policy evaluation exercises. By doing the analysis in two steps, we can guarantee that the
type of policy evaluation exercise we implement does not interfere with the way we measure
the unit-level effects. Moreover, some policy evaluation techniques rely on statistical methods
that involve regularization and nonlinearities. Such methods are part of the standard toolkit
of an empirical economist when the outcomes are readily available, and our approach allows
researchers to use the same tools in environments with constructed outcomes.

Next, we turn to the final part of our empirical analysis, which focuses on using the esti-
mated CP as a regressor. As discussed above, this is not straightforward because we need to
account for the measurement error bias. We approach this task in two steps. First, we rely on
the richness of the Dutch data to estimate the conditional variance in the CP and investigate the
validity of the generalized parallel trends assumption on which our analysis relies. The data
supports this assumption, at least for relatively older individuals with a well-established labor
market history. The results of this exercise are also valuable on their own because they allow
us to uncover the magnitudes of the unobserved heterogeneity (as quantified by its variance)
and its variation across observed characteristics.

Unfortunately, we cannot use the Dutch data to investigate intergenerational-mobility (IGM)
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questions because we observe outcomes only for two decades, which is insufficient to estimate
the CP for parents and kids. Therefore, we turn to PSID and find a naive CP-IGM coefficient
of 0.148 and the bias-corrected coefficient of 0.236, implying a 10% increase in mothers’ CP
is associated with a 2.36% higher CP for the daughters. This result suggests an economically
important role for the transmission of social norms between generations in the U.S. However,
it is important to take these specific estimates with a grain of salt, given the small sample size
of the PSID.

Our paper makes both a methodological and an empirical contribution. On the method-
ological side, we combine the available results from the econometric panel data literature
(Arellano and Bonhomme, 2012) and recent literature on event studies (Borusyak et al., 2023)
to develop a simple yet highly flexible algorithm that can be applied to all event studies. In
Arellano and Bonhomme (2012), the authors show how to use heteroskedasticity restrictions
to identify the variance of the random coefficients in a linear panel data model. Our iden-
tification results extend their analysis to environments where the dimension of unobserved
heterogeneity is so large that it cannot be recovered in an unbiased way for any given unit in
the data. Yet, we can recover parts of it for specific units. We also show how to use the (con-
ditional) variance to solve the measurement error problem, thus allowing researchers to use
estimate unit-level effects as regressors. We extend the analysis in (Borusyak et al., 2023) by
constructing unit-specific variance measures that play a dual role: they allow us to investigate
the magnitudes of unobserved heterogeneity and adjust for the measurement error bias. Our
two-step approach, where researchers first construct unit-level outcomes and then analyze
them, has broad implications for empirical practice. For example, by separating the measure-
ment of the effects from policy evaluation, our methodology facilitates a more flexible analysis
that can be tailored to specific research questions and contexts.

The idea of creating unit-level measures based on appropriately transformed data has
a long tradition in econometrics and causal inference. The early work of Robinson (1988)
showed how to use appropriately transformed outcomes and regressors to construct efficient
estimators in partially linear models. More recently, these ideas were extended in the causal
inference literature with applications to heterogenous treatment effects and thier summaries
(Chernozhukov et al., 2018, 2023; Kennedy, 2023; Nie andWager, 2021; Semenova and Cher-
nozhukov, 2021), and policy learning (Athey and Wager, 2021). See Foster and Syrgkanis
(2023) for a comprehensive treatment and many additional references. Our proposal not only
brings similar ideas to event-study settings but also generalizes them by allowing researchers
to use unit-specific measures as RHS variables. The key limitation of our analysis compared
to this literature is the focus on discrete covariates.

On the empirical side, this paper makes several contributions to the CP literature. It sheds
light on the heterogeneity of the CP across individuals, complementing and expanding upon
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a body of research that has predominantly focused on aggregate penalties. Previous studies
have consistently shown that women endure a substantial CP post-birth, from which recovery
is rare if not non-existent (Angelov et al., 2016; Kleven et al., 2019b,a; Gallen, 2019). In
response to this gap, our empirical investigation introduces an innovative individual measure
of the CP, which allows us to document and analyze the high heterogeneity in the CP across
different dimensions, including the mean and variance of the penalty. This approach reveals
a complex landscape of the CP that challenges the standard aggregate analyses.

Using these individual CP estimates, we provide the first estimates of the IGM in CP as
a measure for the transmission of social norms between generations. Kleven et al. (2019b)
provide some estimates of an intergenerational transmission of CP, by plotting the mothers’
CP in earnings against quintiles of the relative labor supply distribution of the grandparents.
Our methodology allows us to go beyond and use estimates of the CP in earnings for both
generations.

This narrative is further nuanced by research exploring the effects of childcare expansion
policies on the CP, with mixed evidence across different national contexts, including Norway
(Andresen and Nix, 2022b), Austria (Kleven et al., 2022), Germany (Lim and Duletzki, 2023),
Canada (Karademir et al., 2024), and Spain (Castellanos, 2024). These studies collectively
highlight the varied efficacy of policy interventions in mitigating the CP, underscoring the need
for a more granular analysis to capture the underlying dynamics. Our findings particularly un-
derscore the non-monotonic impact of childcare policies on women’s and men’s labor market
choices and composition. By employing this individual-level measure, we can dissect the nu-
ances of policy impacts, revealing that while some childcare expansion initiatives have been
successful in reducing the CP to a degree, their effectiveness is highly contingent on a range
of factors, such as the baseline levels of childcare before the expansion.

Notably, contemporary work by Castellanos (2024) uses the estimated individual CP for
policy analysis. Our main distinctions relative to Castellanos (2024) are three-fold: (1) for-
malizing a general algorithm for this estimation procedure that extends beyond the the CP
to other event studies; (2) providing a method to use these individual estimates as regres-
sors; (3) quantifying the magnitudes of the unobserved heterogeneity. Finally, we provide an
open-source package for practitioners (‘unitdid’).

This detailed examination of the CP heterogeneity enriches the existing literature by pro-
viding a more nuanced understanding of the effects of childbirth and childcare policies on
women’s labor market outcomes and offers critical insights for policymakers. The revelation
of a non-monotonic impact of childcare policies underscores the importance of considering
the diverse needs and circumstances of different population segments when designing inter-
ventions to mitigate the CP. Through this empirical contribution, we highlight the significance
of adopting a more individualized approach to understanding and addressing the challenges
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women face in the labor market post-childbirth, paving the way for more effective and equi-
table policy solutions.

The rest of this article is organized as follows. In Section 2, we formally introduce our setup
and main assumptions. Section 3 describes the data and sample selection and the application
of our method to quantify the extent of unobserved heterogeneity in the CP. Section 4 ex-
plains how the unit-level estimates can be used as an outcome of interest on the LHS in policy
evaluation exercises and applies the developed methodology to evaluate childcare provision
policies. Section 5 explains how to account for the measurement error in estimated unit-level
effects so that they can be used as a RHS variable. Section 6 concludes.

2 Econometric framework

In this section, we formally introduce our setup and key assumptions, which we maintain
throughout the paper. In the later sections, we discuss additional restrictions needed to identify
specific objects. The identification arguments we use are well-understood from the point of
view of the econometrics panel data literature (Chamberlain, 1992; Arellano and Bonhomme,
2012), and we present them largely to introduce the notation and set the stage for the analysis
in the rest of the paper.

2.1 Setup

The sample consists of n units, with i denoting a generic one, which we observe over calendar
time t ∈ Ti := {T0,i, . . . , T1,i}. For each unit i, we observe outcomes Yi,t in period t and fixed
characteristics Xi.4 In what follows we treat Ti as a part of Xi. Each unit is characterized by
an event time E⋆

i ∈ E , and we observe a right-censored version of this variable:

Ei =

E⋆
i , if E⋆

i ≤ T1,i

+∞, if E⋆
i > T1,i.

We view the units as an i.i.d. sample from a population of interest and collect the observed
data into a dataset D.

Our first assumption describes the model for the outcomes.

Assumption 2.1. (Two-Way Model)
4Time-varying covariatesXi,t can be incorporated by combining them into a tupleXi := {Xi,T0,i , . . . , Xi,T1,i}.
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For some known K ≥ 0 and each t ∈ Ti we have

Yi,t = αi + λt(Xi) +
∑

k≥−K

τi,e,k1{E⋆
i = e, t− e = k}+ ϵi,t,

E[ϵi,t|Xi, αi, τ i] = 0,

where τ i := {τi,e,k}e∈E,k≥−K .

We can interpret Assumption 2.1 as a model for realized values of the underlying potential
outcomes in which the benchmark outcomes follow a (conditional) two-way model, and there
are limited anticipation effects for at most K periods; for a recent survey of such models,
see Arkhangelsky and Imbens (2023). Alternatively, we can interpret the same structure as a
statistical model that connects the latent variables, τ i, to observed outcomes and event times.

To understand this model, consider a unit i with the adoption date E⋆
i . Suppose E⋆

i ≤ T1,i

and thus E⋆
i = Ei, i.e., the observed event time is not censored. Then, for any period t ∈ Ti

prior to Ei − K, the evolution of the outcomes for this unit is determined by the two-way
model:

Yi,t = αi + λt(Xi) + ϵi,t. (1)

At the same time, for any period t ∈ Ti such that t ≥ Ei −K, the evolution of the outcomes is
shifted by τi,Ei,t−Ei

:
Yi,t = αi + λt(Xi) + τi,Ei,t−Ei

+ ϵi,t. (2)

The situation is more challenging for units for which the event time is censore; thatt is, we
only know that E⋆

i > T1,i. Then for any t ∈ Ti such that t ≤ T1,i −K we have the following:

Yi,t = αi + λt(Xi) + ϵi,t,

but the model for the outcomes in period t ∈ {T1,i − K + 1, . . . , T1,i} cannot be written in
terms of observed quantities and unit-specific parameters introduced in Assumption 2.1. We
discard outcomes in these periods because they do not contain information we can use for
identification.

Define ϵ⊤i :=
(
ϵi,T0,i

, . . . , ϵi,T1,i

)
; the following assumption restricts the data generating pro-

cess behind E⋆
i .

Assumption 2.2. (Strict Exogeneity)
Adoption time E⋆

i is strictly exogenous with respect to ϵi:

ϵi ⊥⊥ E⋆
i |Xi, αi, τ i.

8



To unpack this assumption, it is instructive to compare it to an experimental benchmark.
Suppose the event time E⋆

i was assigned in a completely randomized experiment, with the
resulting outcomes being generated according to Assumption 2.1. In this case, Assumption
2.2 trivially holds by design. The same logic applies to more complicated setups where we
can view E⋆

i as quasi-random, with a distribution that varies by Xi. Assumption 2.2 is more
general and allows the assignment to be based on the unobserved unit-specific parameters,
including the whole trajectory τ i. In particular, if we interpret 2.1 as a causal model, then this
allows for the selection based on future gains. As a result, it is a fairly general restriction that
we can expect to hold in a large class of applications.

Remark 2.1. The model specified by Assumptions 2.1 - 2.2 has a user-specified parameter K,
which quantifies the extent of anticipation analogously to the limited-anticipation assumption
in Callaway and Sant’Anna (2021). In practice, we choose this parameter by analyzing the
behavior of the outcomes prior to event time Ei.

Remark 2.2. The two-way model in Assumption 2.1 allows the benchmark outcomes to vary
freely with Xi but restricts the systematic variation within the subpopulations with the same
value ofXi. We focus on this model given its prevalence in applied work, but our approach can
be naturally extended to environments with interactive fixed effects (e.g., Chamberlain, 1992;
Arellano and Bonhomme, 2012). In some applications (Kleven et al., 2019a), researchers
consider models without unit-fixed effects αi, which is a special case of Assumption 2.1.

2.2 Sample selection

In our analysis, we restrict attention to a particular subsample of units. This subsample de-
pends on another user-specified parameter (in addition to K), which we denote by H. This
parameter describes the horizon we are analyzing; in our empirical applications, we always
set H = 5. Formally, most variables that we define from now on should be indexed by K and
H, but we omit this indexing for brevity.

First, we define a set of units we will use for the analysis. To be able to eliminate unit-level
fixed effects αi, we need to restrict attention to event times that are sufficiently distant from
the starting observation period. We define the appropriate selection indicator,

Si := 1{T0,i +K < E⋆
i },

and denote the set of such units by S, i.e, S := {i ∈ [n] : Si = 1}. Next, we define the selected
time periods:

T s
i :=

{T0,i, . . . , T1,i}, if Ei ≤ T1,i

{T0,i, . . . , T1,i −K}, if Ei > T1,i

9



In our analysis, we focus on units in S and for any such unit, we restrict attention to periods
t ∈ T s

i .
Units in S serve different purposes, and we split this set accordingly. First, we define a set

of units that we call “treated”:

Str
i := 1{Si = 1; Ei ≤ T1,i −H},

and collect them into a set Str.5 For every unit i ∈ Str, we observe outcomes for at least H
periods after the event time. We further split S and Str based on event times. In particular,
for any e ∈ E we define:

Str
i (e) :=1{Ei = e; Si = 1; Ei ≤ T1,i −H},

Scont
i (e) :=1{Ei > e; Si = 1};

The first indicator describes units in with event time e for which we observe data at least
K + 1 periods before e (because Si = 1) and at least H periods after. The second indicator
describes units in S with event time larger than e. We use Scont(e) and Str(e) to denote the
corresponding subpopulations for a given event time e.

2.3 Unit-specific measures

Equation (2) shows that for any t ≥ Ei − K, the observed outcomes are informative about
τi,Ei,t−Ei

, as long as we account for the bias introduced from a unit-specific unobserved het-
erogeneity that is fixed across time (αi), and for the time-specific effects that might vary by
observables of interest (λt(Xi)). Intuitively, one can recover these objects by estimating equa-
tion (1) by ordinary least squares (OLS) using units in Scont and pre-event periods t < Ei−K.
This intuition masks a few subtleties in the estimation process. Therefore, we opt to describe
the estimation process formally.

For any unit i ∈ Scont(e+ k +K) such that e+ k ∈ T s
i we define:

∆Yi,e,k := Yi,e+k −
∑

T0,i≤l<e−K Yi,l

e− T0,i −K
=(

λe+k(Xi)−
∑

T0,i≤l<e−K λl(Xi)

e− T0,i −K

)
+

(
ϵi,e+k −

∑
T0,i≤l<e−K ϵi,l

e− T0,i −K

)
.

Assumptions 2.1 - 2.2 guarantee that ∆Yi,e,k provides an unbiased signal for a particular com-
5Note that “treated” units in Str can still serve as “control’ observations for units with earlier adoption dates.
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bination of time-specific functions:

∆λe,k(x) :=

(
λe+k(x)−

∑
T0(x)≤l<e−K λl(x)

e− T0(x)−K

)
=

E
[
∆Yi,e,k|Xi = x, Scont

i (e+ k +K) = 1, e+ k ∈ T s
i

]
. (3)

We use ∆λe,k(x) evaluated at (Ei, Xi) to define for i ∈ Str and k ∈ {−K, . . . , H}:

τi,k := ∆Yi,Ei,k −∆λEi,k(Xi) = τi,Ei,k +

(
ϵi,Ei+k −

∑
T0,i≤l<Ei−K ϵi,l

Ei − T0,i −K

)
.

In practice, we cannot compute expectations in (3) and instead rely on noisy estimates
∆λ̂e,k(x). Algorithm 1 summarizes this approach, defining ∆λ̂e,k as a solution to an OLS op-
timization problem over some functional class F without specifying the exact nature of this
class. In our empirical application, Xi is discrete, and thus F includes all possible functions of
x, which corresponds to computing ∆λ̂e,k(x) using empirical analogs of (3). In addition to τ̂i,k

the algorithm delivers Ŷ c
i,k, which we later use as estimates of the benchmark outcomes,

Y c
i,k := αi + λEi+k(Xi) +

∑
T0,i≤l<Ei−K ϵi,l

Ei − T0,i −K
.

Algorithm 1 uses as inputs data D, two user-specified parameters K and H, the functional
class F , and weighs {ωi}i∈S . These weights are needed to conduct inference, and they affect
the output of the algorithm only through the construction of the function ∆λ̂e,k(x). We con-
struct them by generating a sample of i.i.d. random variables {ωi}i∈S , with ωi ∼ Exp(1). To
conduct inference, we rerun Algorithm 1many times, each time generating a new set of weight
{ωi}i∈S . The collection of resulting estimates can then be used for inference using standard
Bayesian bootstrap (Chamberlain and Imbens, 2003).

Remark 2.3. In Borusyak et al. (2023), the authors use OLS-based imputations to construct
unit-specific measures of treatment effects, which are later aggregated with user-specified
weights in order to produce the average effect of interest. We choose to construct unit-specific
measures using Algorithm 1, because it delivers an explicit expression for the measurement
error, which we use in later sections.

Remark 2.4. In our discussion, we ignored the support conditions, i.e., we assumed that
expectations in (3) are well-defined for any (x, e) in the support of (Xi, Ei)|Str

i = 1, allowing
us to use∆λEi,k(Xi) to construct τi,k. In practice, the set Scont(e+k+K) can be empty for some
relevant values of e. In this case, we drop such event times from the analysis, thus introducing
an additional sample selection restriction.
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Algorithm 1: Outcome construction
Data: D, K,H, F , {ωi}i∈S
Result: {Ŷ c

i,k, τ̂i,k}i∈Str;k∈{−K,...,H}

1 for e ∈ E do
2 for k ∈ {−K, . . . , H} do
3 for i : Ei ≥ e > T0,i +K and e+ k ∈ T s

i do
4 Define ∆Yi,e,k := Yi,e+k −

∑
T0,i≤l<e−K Yi,l

e−T0,i−K

5 end
6 Define

∆λ̂e,k := argmin
f∈F

∑
i∈S(e+k+K),e+k∈T s

i

(∆Yi,e,k − f(Xi))
2ωi

7 for i ∈ Str(e) do
8 Define τ̂i,k := ∆Yi,e,k −∆λ̂e,k(Xi);

9 Define Ŷ c
i,k := ∆λ̂e,k(Xi) +

∑
T0,i≤l<e−K Yi,l

e−T0,i−K
;

10 end
11 end
12 end

2.4 Measurement error

We will use estimated τ̂i,k both as left-hand-side (LHS) and right-hand-side (RHS) variables,
and to understand the problems this leads to, we write it in the following form:

τ̂i,k = τi,k + ξi,k = τi,Ei,k +

(
ϵi,Ei+k −

∑
T0,i≤l<Ei−K ϵi,l

Ei − T0,i −K

)
+ ξi,k,

where ξi,k is the estimaton error in τ̂i,k that arises from the error λ̂t(Xi)− λt(Xi). Under weak
conditions on the underlying estimator this error vanishes as n goes to infinity. The second
error term,

εi,k :=

(
ϵi,Ei+k −

∑
T0,i≤l<Ei−K ϵi,l

Ei − T0,i −K

)
, (4)

is unit-specific and does not vanish with n. We refer to it as the measurement error (ME) in
τ̂i,k for τi,Ei,k. Assumptions 2.1 - 2.2 guarantee that the ME is orthogonal to Xi:

E
[
εi,k|Xi, αi, τ i, S

tr
i = 1

]
= 0. (5)

This condition implies that up to vanishing errors ξi,k, we can safely use τ̂i,k as a LHS variable
for the regression analysis instead of τi,E,k.
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3 Heterogeneity in child-penalty

In this section, we implement Algorithm 1 for a particular empirical problem – estimation of
child penalties. In their influential paper, Kleven et al. (2019b) coined the term “child penalty”
(CP) to describe the differential career and earnings losses incurred by women compared to
men after having children. We begin by describing the data we use for the CP estimation. We
then describe the estimation of individual-level CP and explore the observed and unobserved
heterogeneity in CP. These data and individual-level estimates are then used in Section 4,
where we analyze the effects of childcare expansion policies on the CP.

3.1 Data

Data Sources

We use administrative data from Statistics Netherlands (CBS) on the universe of Dutch resi-
dents. Different data sources, such as the municipality registers or tax records, are matched
through unique individual or household anonymized identifiers. In the following section, we
present the main variables used and the sample construction.

Tax and Employment Records Our primary source of data is an extensive yearly-level
employer-employee data set derived from tax records (baansommentab), covering the pe-
riod from 1999 to 2016. We analyze two labor market outcomes: unconditional earnings and
employment. Employment is specified as having a job based on an employment contract be-
tween a firm and a person, excluding self-employment. Second, the earnings data consists of
yearly gross earnings after social security contributions, but before taxes and health insurance
contributions from official tax data.

Demographic and Education Information To enrich our understanding of the workforce,
we incorporate demographic data into our analysis (gbapersoontab). This includes informa-
tion such as birth year, date of death, sex, and yearly information on the municipality of res-
idence, household composition, marital status, and migration spells (gbaadresobjectbus and
vslgwbtab).

A unique aspect of our demographic data is the inclusion of a parent-child key (kindoud-
ertab). We use information on birth dates and linkage between parents and their children to
determine the first child for all legal parents, which may include both adoptive or biological
parents.

Lastly, we also observe the educational attainment at each point in time (hoogsteopltab)
and use the highest level of education attained by 2022.
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Childcare Provision Data An integral part of our study involves examining the role of child-
care in labormarket participation. To this end, we use records about childcare service providers
using the firm’s job classification (betab), and data on job location that we use to compute our
index of childcare supply per municipality (gemstplaatsbus/gemtplbus/ngemstplbus). The job
location data set contains the municipality of each job, measured in December. When there
is more than one establishment for a given firm, we impute the closest establishment to the
worker’s residential address as the job location.

Sample Definition

A key aspect of our study is the examination of labor market outcomes around the time of
first childbirth. We specifically look at individuals who had their first child between 2003 and
2022. Furthermore, we restrict our sample to individuals that are 22 to 45 years old at the
time of first birth, a critical phase for career development and family planning.

Note that in Section 4 we study the effect of a 2005 childcare provision expansion policy
on the child-penalty. Therefore, we adjust our sample criteria to include parents with their
first child-birth from 2000 so that we can see the full horizon of their labor market five year
post birth before the 2005 policy took place.

3.2 Exploring heterogeneity

To estimate individual CP we follow the approach outlined in Section 2. We restrict attention
to three different covariates: gender Gi ∈ {male; female}, education level educi, and birth
cohort Bi, so that Xi = (Gi, educi, Bi). We apply Algorithm 1 with H = 5 and K = 3, and
since Xi is discrete, we estimate ∆λ̂e,k(x) using the empirical analog of (3).

We use the resulting data set to construct estimates of the individual CP. Since CP are more
naturally interpreted in relation to underlying baseline outcomes (earnings or participation),
we use measures Ŷ c

i,k also delivered by Algorithm 1 to normalize them. In particular, consider
an individual i ∈ Str with Xi = x and Ei = e, and let nx,e be the total number of such
individuals. For every k ∈ {−K, . . . , H} we define

τ̃i,k :=
τ̂i,k∑

j:Ej=Ei,Xj=Xi
Ŷ c
i,k

nx,e

, (6)

where τ̂i,k and Ŷ c
i,k are constructed using Algorithm 1. As discussed in Section 2, the numerator

of (6) is an estimator of the individual level CP τi,Ei,k. The denominator captures the average
benchmark outcome for individuals in the appropriate sub-population. For future reference,
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we collect the normalized estimated coefficients into a (K +H + 1)-dimensional vector:

τ̃ i := (τ̃i,−K , . . . , τ̃i,H).

We proceed with an exploratory analysis of these objects to visualize the variation in τ̃i,k.
This analysis intentionally ignores the errors in τ̃i,k and Ŷ c

i,k, which we discussed in Section 2.
We start by plotting the marginal distributions of τ̃i,k (for earnings) across different horizons
and genders pooled across all birth cohorts. The results are reported in Figure Ia and demon-
strate a large variation in estimated individual CP, which increases over k. As we will see later,
a large part of this variation is explained by the birth cohort Bi and the age of giving birth
Ai := Ei −Bi.

Figure Ia focuses on marginal distributions for each k, and thus cannot speak to any per-
sistence of individual CP. To address this, we apply a K-means algorithm (Lloyd, 1982) to the
vector of estimated child penalties τ̃ i and classify all individuals of the same gender into three
groups. The results of this analysis are reported in Figure Ib and show important variation in
the CP trajectories. In particular, we see that for around two-thirds of the male population, CP
are non-existent (orange line). At the same time, a quarter of the sample have large negative
trajectories (green), and another 10% of the population with a positive trajectory compared
to their counterfactual earnings growth in the absence of parenthood (blue). The situation
for females is qualitatively similar, though the trajectories themselves look very different, with
28% of women that seem to leave the labor force (green), 55% of the female shift to some
part-time (orange), and 17% of women maintaining their pre-birth trajectory. These results
suggest that the conventional analysis that reports the average CP across the entire population
may be missing important individual-level variation.

As our next exercise, we summarize the heterogeneity in CP that is related to observables.
We do this by estimating the following equations by OLS separately for men and women:

τ̃i,k =
1984∑

b=1978

βb,k1{Bi = b}+ ν
(b)
i,k ,

τ̃i,k =
36∑

a=25

γa,k1{Ai = a}+ ν
(a)
i,k .

Figure A.1 reports the estimation results for all horizons. On a first appearance, the second
figure suggests that the variation in birth cohorts is not important. This, however, is a com-
position effect: most individuals that we observe from 1978 are relatively old by the time we
start observing their outcomes, and the opposite is true for those born in 1984. In contrast, the
results in Figure A.1a show a wide variation in average child penalties by age of first childbirth,
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suggesting selection into the age of giving birth plays an important role, and emphasizing the
role of individual estimation.

To address the composition concern, we do a two-way decomposition of the average (over
time) individual level CP by estimating the following equation by OLS separately for men and
women:

τ̄i =
1983∑

b=1978

βb{Bi = b}+
36∑

a=25

γa{Ai = a}+ νi,

where τ̄i :=
1

K +H + 1

H∑
k≥−K

τ̃i,k.

The results are reported in Figure II. Note that we omit the birth cohort of 1984, so all coef-
ficients should be interpreted with respect to that benchmark. We see the share of variation
in CP across birth cohorts and age at childbirth is similar in nature and magnitude – the CP
is shrinking over birth cohorts and age of childbirth. However, it is important to note that the
variation in the age of childbirth (seven ages) seems to be twice as important as the variation
in birth cohort (15 birth cohorts).

Finally, the results in Figure A.1a serve as a diagnostic test for the limited-anticipation
assumption. We can see a confirmation of the limited-anticipation assumption for individuals
who became parents in their thirties (i.e., the estimates three periods before birth are close
to zero), while this is not the case for individuals who became parents in their late twenties.
This diagnostic test suggests one should focus the analysis on individuals who became parents
in their thirties, a sample selection we add to the rest of our analysis.

4 Using individual estimates as an outcome (LHS)

In this section, we continue with our CP analysis and explain how the individual-level esti-
mates described in Section 3 can be used as an outcome of interest in policy evaluation exer-
cises. Specifically, we illustrate it in the context of evaluating the effects of childcare supply
expansion policies on the child penalty, a policy that had been recently studied, finding a wide
range of empirical evidence (Rabaté and Rellstab, 2021; Andresen and Nix, 2022a; Kleven
et al., 2022).6 We start by formalizing the policy analysis within the econometric framework
described in Section 2, and introducing additional assumptions. We then provide the necessary
institutional background on these policies, show how to use our measures to analyze them,

6Since our data begins in 1999 and we need enough time period before the policy change on 2005, we will
limit the rest of the analysis to look on treatment affects post-conception, which amounts to setting K = 0 in
Algorithm 1.

16



and finally compare them with the approaches currently used in the empirical literature.

4.1 Methodology

In this section, we formalize our policy analysis. Specifically, let Wi,t denote the level of the
policy of interest unit i is exposed to in period t, and define Wi := (. . . ,Wi,T0,i

, . . . ,Wi,T1,i
, . . . )

– the policy path unit for unit i. We assume that the policy path Wi is a known deterministic
function ofXi,Wi = W (Xi), and thus is observed for every unit. For example, this assumption
holds in applications where policies vary over locations as long as Xi includes the location of
unit i, which is the case in our context.

For k ∈ {−K, . . . , H} we interpret the unobservable τi,e,k defined in Assumption 2.1 as the
realization of the underlying potential outcomes.

Assumption 4.1. (Potential outcomes)
For every k ∈ {−K, . . . , H} and some known Lk,a, Lk,b we have:

τi,e,k = τi,e,k

(
W̃i,e,k

)
,

where W̃i,e,k = (Wi,e+k−Lk,a
, . . . ,Wi,e+k+Lk,b

).

(Lk,a, Lk,b) are user-specified parameters that describe which part of the policy path is rel-
evant for the corresponding potential outcome. For example, if we set Lk,a = Lk,b ≡ 0, then
W̃i,e,k = Wi,e+k, thus measuring the exposure of unit i to the policy in period e+k. Assumption
4.1 then implies τi,e,k = τi,e,k(Wi,e+k), i.e., only contemporaneous level of policy exposure is
relevant. By varying Lk,a and Lk,b Assumption 4.1 can accommodate various dynamic and an-
ticipation effects. In our empirical application, we set Lk,a = k, and Lk,b = −k, which amounts
to setting Wi,e,k = Wi,e, i.e., we assume that only the level of policy at the event time has a
causal effect.

We denote W̃i,k := W̃i,Ei,k, and write:

τi,Ei,k = τi,Ei,k

(
W̃i,k

)
.

By construction, W̃i,k is a deterministic function of Xi and Ei. As a result, it is impossible to
distinguish the effect of policy from the effect of the event time e and heterogeneity in τi,e,k

across units. This situation mirrors the standard problem in policy evaluation, where without
further assumptions, we cannot separate the effect of the introduction of a new policy from
cross-temporal and cross-sectional heterogeneity in outcomes. To overcome this issue, we
restrict the underlying heterogeneity and split τi,Ei,k into three components.
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Assumption 4.2. (Regression model)
For every k ∈ {−K, . . . , H} we have

τi,Ei,k = βk(Xi) + µk(Ei) + δi,k(W̃i,k) + υi,k, E[υi,k|Xi, Ei, W̃i,k] = 0.

The first two components of the regression function are analogous to conventional two-
way fixed effects, which are defined over the two dimensions that create the variation in the
treatment variable. The third part describes the effect of the policy, which potentially can vary
over units. In Appendix B we discuss a causal model that implies Assumption 4.2.

Of course, we do not observe τi,Ei,k but, as discussed in Section 2.4, we have a noisy estimate
of it:

τ̂i,k = τi,Ei,k + εi,k + ξi,k,

where ξi,k is the estimation error that vanishes as the sample size increases, while εi,k is the
measurement error, which satisfies the orthogonality restrictions. Combining the pieces to-
gether, we can write

τ̂i,k = βk(Xi) + µk(Ei) + δi,k(W̃i,k) + υ̃i,k + ξi,k, E[υ̃i,k|Xi, Ei, W̃i,k, S
tr
i = 1] = 0, (7)

where υ̃i,k = υi,k + εi,k. We use this equation as the basis for the policy evaluation analysis.

Remark 4.1. Our policy analysis compares the values of τ̂i,k across units with different values of
Xi, Ei, and W̃i,k, and thus is cross-sectional in nature. However, by construction, the outcomes
τ̂i,k and policies W̃i,k form a panel, and thus for each unit i, we can exploit the variation in k. A
big advantage of having the panel dimension is the ability to relax Assumption 4.2 and allow
for unit fixed effects. We do not do this because comparison over k is hard to interpret in the
context of our empirical application.

Remark 4.2. Assumption 4.2 specifies a two-way structure that separates Xi and Ei. We
opt for this choice because it is commonly used in applications. However, one can specify
a different model that potentially includes interactions between Xi and Ei, as long as that
structure still allows for residual variation in W̃i,k. See Goldsmith-Pinkham et al. (2022) for a
related discussion.

Remark 4.3. In our analysis, we treat unit-level data as i.i.d. which implies that errors υi,k
are i.i.d., and standard errors in estimating version of (7) can be constructed using the same
weighted bootstrap scheme as we discussed in Section 2. In practice, one might want to treat
data only as conditionally independent given some group-level variables and then conduct
unconditional inference in (7) effectively allowing for correlation in υi,k.
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4.2 Institutional background – Dutch childcare provision expansion

The 2005 Dutch childcare expansion reform

We begin with a brief overview of the subsidized childcare system and its recent changes
in the Netherlands. Before the 2005 reform, the system for center-based daycare was funded
differently across the board. Most daycare centers received subsidies from employers and local
governments, which meant lower fees for parents compared to the 24% of daycare centers
that weren’t subsidized. However, these unsubsidized centers’ costs could be partially reduced
through tax deductions for working parents. In 2004, about 25% of children under the age of
three were enrolled in such center-based care.

In addition to center-based care, around 25% of children also attended playgroups (peuter-
speelzalen), which offered part-time care for less than four hours a day. This type of care was
mostly used by families where one parent was not working. For children in primary school,
there were both subsidized and unsubsidized options for out-of-school care, with costs for the
unsubsidized care being partly tax-deductible. Yet, the enrolment rate for 4-12 year olds in
centre-based care was less than 6% in 2004.

Before the reform, access to childcare was not uniform. Factors such as whether both
parents’ employers contributed to childcare costs, and varying policies between municipalities,
affected accessibility and cost. There were also noticeable differences in what parents had to
pay at childcare providers, regardless of whether companies or municipalities subsidized them.

The 2005 reform brought significant changes, creating a unified subsidy system for center-
based care. From then on, all center-based daycare centers were eligible for the same govern-
ment subsidy, which was given directly to parents using formal care. This change was espe-
cially beneficial for parents who used unsubsidized centers before 2005, as the new subsidy
was typically more than what they saved through tax deductions.

Childcare index

To create a municipality-based index of childcare supply, we utilized comprehensive informa-
tion from the 5-digit sector classification, which has been available for all jobs in the Nether-
lands since 2001. This data allowed us to identify childcare workers and their job locations.7

Our childcare supply index (CCI) for each municipality is calculated by dividing the number
of childcare jobs in a given municipalitym and year t (N jobs

m,t ) by the number of children under
7Rabaté and Rellstab (2021) finds a strong correlation between the trends in childcare employment and the

aggregate public spending on childcare, validating this index.
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five years of age in the same locality (N children
m,t ):

CCIm,t = N jobs
m,t /N

children
m,t

Figure IIIa presents the variation in childcare supply per preschool-aged children across mu-
nicipalities, from 1999 to 2016. The dot represents the mean CCI in a given year where’s
the shaded area represent the distribution of CCI across municipalities in that year. The data
reveal a significant range in the ratio of childcare workers to preschool children, with values
ranging from 0 to 0.3.8 The figure illustrates the substantial variation in childcare availability
between different municipalities and the large increase due to the 2005 reform of childcare
expansion.

4.3 Policy analysis

Descriptive analysis

We begin by exploring the relationship between childcare provision levels and child-penalties
(Figure A.2). We aggregate the estimated individual CP at the municipality times year-of-
conception level, following the empirical strategy described in Section 3.2 and plot them
against the childcare provision index (CCI). The line represents the estimated coefficient
from regressing the individual CP on CCI. We divide the estimation between men in blue and
women in orange. We present the results for each estimate of the year relative to birth (k).
Figure A.2a presents the correlations using CP estimates for earnings. Similarly, Figure A.2b
presents the correlations using CP estimates for participation.

We find that for women, childcare provision levels are related to lower child-penalty in
participation and earnings. The relationship is stronger as we get farther from the timing of
birth. This is consistent with the idea that childcare provision helps mothers return to the
labor force after they finish their maternity leave, shrinking the CP. Fathers seem to present a
similar relationship on the participation margin, although milder in strength.

A naive interpretation of these results will conclude that childcare provision reduces the
CP. However, this interpretation will ignore the obvious supply-side response to a differential
demand. In other words, households with higher employment and earnings potential will have
higher willingness to pay for childcare services, resulting in higher availability. We, therefore,
shift our analysis to explore the 2005 Dutch childcare expansion policy directly.

8It’s important to note that some of the extreme values might be influenced by measurement errors, as the
job location is tied to the firm’s location and may not always align with the actual municipality where the job is
performed.
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Semi-elasticity of childcare and labor supply

We shift our focus to illustrate how our flexible individual-level estimation allows us to estimate
a common object of interest in economics – elasticities. In our analysis, we focus on CCIMi,Ei

,
which is the childcare index for the municipality Mi at the time Ei when the individual gave
birth. We treat this variable as W̃i,k from Assumption 4.1, which amounts to setting Lk,a = k

and Lk,b = −k.
Specifically, we examine the semi-elasticity of childcare availability on labor supply by

estimating a linear equation:

1

6

5∑
k=0

τ̂i,k = δ · CCIMi,Ei
+ γMi

+ βAi
+ µEi

+ υi (8)

This equation is a special case of (7), aggregated over k, where we set δi,k(W̃i,k) = γW̃i,k.
We control for the municipality fixed effects at the time of childbirth γMi

, year of giving birth
fixed effects µEi

, and the age-at-birth fixed effects βAi
. By incorporating these fixed effects,

the model aims to isolate the impact of the childcare expansion on the CP beyond potential
confounding factors related to time, location, and age at childbirth.

We find a low and insignificant semi-elasticity of childcare provision and earnings (see
Table I), consistent with other recent findings (Rabaté and Rellstab, 2021; Kleven et al., 2022).

Nonlinearity

The results in Table I might be driven by the linear and constant relationship between CP
and childcare provision imposed in Equation 8. Therefore, we exploit the flexibility of our
measurement method and estimate non-parametric treatment effects:

τ̂i,k = δk(CCIMi,Ei
) + γk,Mi

+ βk,Ai
+ µk,Ei

+ υi,k (9)

Compared to (8), this specification examines the relationship separately for each horizon k.
It also allows for the effect of CCIMi,Ei

to be nonlinear. In the context of Assumption 4.2 this
amounts to specifying δi,k(W̃i,k) = δk(W̃i,k).

We split the estimation between men (blue) and women (orange) and present the results
for each estimate of the year relative to birth (k) in Figure IV. Each dot represents a binscatter
of the non-parametric treatment effects estimated from equation 9. We can see in Figure IV
a non-linear treatment effect of childcare provision expansion on almost all margins, groups,
and years-post-birth. For example, the most striking non-linear effects are evident on the fa-
thers’ labor-force participation. These U-shaped effects suggest that an expansion of childcare
has greater effects on father’s labor supply when the baseline availability of childcare is low.
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However, in higher levels of baseline childcare, a childcare expansion can also improve father’s
labor-force participation.

One could interpret these non-monotonic results as two different types of expansion im-
plying different treatment effects. When childcare supply is low, the treatment provides more
daycares, driving effects via the extensive margin. At higher levels, the treatment provides
more after-hours care; consistent with the different margins of the policy that were enacted
in 2007 for after-hours care expansion in schools. This non-linear result emphasizes the need
for flexible estimation methods and can explain the wide range of results documented in the
literature.

Discussion

Our findings indicate a clear correlation between increased levels of childcare provision and
reduced CP, highlighting the potential role of childcare availability in mitigating the labor
market disadvantages faced by parents. However, it’s notable that the elasticity of childcare
provision in relation to earnings is relatively low and subject to change based on the specifi-
cation of our model. This suggests a nuanced relationship where childcare provision does not
uniformly translate to higher earnings for parents. Interestingly, we observe a non-linear effect
on fathers’ labor supply, indicating that the impact of childcare provision on labor participation
is complex and varies by the type of expansion.

4.4 Comparison with common methods

In the last section, we discussed the benefits of employing individual event-study estimates
as objects of interest for policy evaluation. We illustrated it in the context of assessing the
effects of childcare expansion on the Child Penalty (CP). In this section, we will compare our
method to common ‘dynamic‘ policy-evaluationmethods that tend to discretize their treatment
effects and time variation, potentially overlooking substantial data variation. Our approach,
in contrast, harnesses this variation to provide a more nuanced and detailed understanding of
policy impacts. This not only enriches the analysis but also offers more transparent, precise,
and actionable insights for policymakers and stakeholders. Nevertheless, we adjust in this
section our flexible specification to a simplified binary specification so we can further compare
the empirical results of the common one-step approach to our two-steps approach that splits
the measurement and policy-evaluation steps.
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Common DiD specification for policy evaluation

The standard DiD method typically discretizes both the pre- and post-treatment periods, as
well as the treatment. In this approach, the pre-treatment period includes individuals who gave
birth in 2000, considering the Child Penalty (CP) for k = 0, . . . , 5 as fully non-treated. The
post-treatment period comprises individuals who gave birth in 2011, with CP for k = 0, . . . , 5

deemed fully treated. Treatment is defined as municipalities with an expansion of at least 10
percentage points in CCI between pre and post-periods:

Tm ≡ 1{CCI
2011−2016

m − CCI
2000−2005

m > 0.1}.

This common DiD specification is illustrated in Figure IIIb. We can see that both treatment
and control show parallel trends in the pre-period. In the post-period, the treatment diverges
from the control group (mechanically). Importantly, the control group is also responding to the
policy, which is expected given that the policy was implemented nationwide. This illustrates
the downside of using this common approach. The key benefit of this approach is the ability
to run it in one regression as follows:

Yi,t = λt + αAi

+
∑
k ̸=−1

τk1 {Ei + k = t}+
∑
k ̸=−1

βk1 {Ei + k = t}1{Tm}

+
∑
k ̸=−1

γk1 {Ei + k = t}1{Ei > 2005}+
∑
k ̸=−1

δk1 {Ei + k = t}1{Ei > 2005 · Tm}+ νi,t (10)

In contrast, our approach, designed to capture more nuanced treatment effects, involves
two separate steps. First, we use Algorithm 1 to construct unit-level estimates τ̂i,k. Second,
we restrict the sample to births in 2000 and 2011 for individuals aged 30-34, aggregating
τ̂i,k by Treatment/Control group and Pre/Post period, and then computing the DiD estimator
separately for each k.

Common intuition suggests that regression (10) should implement these steps automati-
cally. However, the recent results for two-way methods (Sun and Abraham, 2021; Callaway
and Sant’Anna, 2021) and regressions with multiple treatments (Goldsmith-Pinkham et al.,
2022) show that this intuition is often misleading. By separating the analysis into two steps,
we can guarantee that the measurement of τ̂i,k is not affected by the particular implementation
of the policy evaluation step.
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Comparing results

Aggregating individual-level estimates for different periods and locations we form four distinct
panels (see Figure A.3). We then perform a DiD analysis on each dot in the panels, yielding
the results depicted in the left panels of Figure V. Conversely, the common DiD specification,
conceptually similar to ours and outlined in Equation 10, produces results illustrated in the
right panels of Figure V.

The two approaches differ fundamentally in terms of sample restriction and accounting for
unobserved heterogeneity. In our analysis, we include all individuals who had their first child
from 2000 to 2022. We use this information to estimate λt(Xi) as precisely as possible. We
then restrict the analysis to τ̂i,k for individuals who had their first child in 2000 and 2011 at
the age of 30-34. In contrast, the conventional approach (10) is based on the data from 2000
to 2005 and 2011 to 2016 and includes all individuals who had their first child at the age of
30-34. This makes the estimates of the CPs less precise. They also suffer from contamination
bias (Goldsmith-Pinkham et al., 2022), though the magnitude of this bias is unclear.

The two approaches also differ substantially in terms of the underlying selection assump-
tions. Conventional specification implies that a simple cross-sectional comparison between
individuals who had a child in a given year and those who would have it in the following year
provides an unbiased estimator for the underlying CP. In contrast, Assumption 2.1 implies that
such comparison can be confounded by individual-level fixed effects. Accounting for these ef-
fects has first-order implications for the results. In Figure A.4, we present the outcomes from
our specification with and without unit fixed effects, and they are dramatically different.

These differences in sample selection result in substantial qualitative differences in the
outcomes. For example, the results in Figure V suggest that a more extensive expansion of
childcare provision could reduce the child penalty for mothers and fathers under our spec-
ification. Specifically, the left panels report the results from our specifications. We see that
mothers and fathers reduce their labor supply slightly in the short term but increase it in the
medium term (bottom panel). Similarly, the effect of childcare expansion onmothers’ earnings
is even greater than on fathers’ earnings (top panel). These results are consistent with greater
benefits of childcare expansion to mothers’ earnings due to the combination of intra-household
bargaining and social norms.

Conversely, the common specification yields the opposite conclusion. Under the common
approach, both men and women reduce their labor supply and, therefore, their earnings due
to a larger expansion in childcare provision. It is hard to think of the economic forces that
would lead to a reduction in labor supply. Our discussion above suggests this result might be
driven by an unaccounted unobserved heterogeneity and/or contamination bias.

Remark 4.4. The specification we use for comparison is motivated by the current status quo
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in the empirical literature on CP (e.g., Kleven et al., 2019b). Of course, it is feasible to in-
corporate the unit fixed effects in the common specification (10) as well by dropping some
of the indicators or allowing for never-treated individuals. However, doing this results in an
additional form of contamination bias, as emphasized in (Callaway and Sant’Anna, 2021; Sun
and Abraham, 2021; Goldsmith-Pinkham et al., 2022). In particular, the coefficients in (10)
correspond to weighted averages over multiple periods with negative weights, which can po-
tentially result in misleading conclusions. In contrast, our approach does not suffer from this
problem because it is based on aggregating τ̂i,k for a pre-specified population of units.

Beyond the child-penalty

The methodology used in this section demonstrates the benefits of event-study measurements
as outcomes in a wider context. This flexible approach can be applied to examine the effects
of various policies, providing a valuable tool for policy analysis and academic research. Im-
portantly, by separating the analysis into two steps, we allow researchers to use all recent
advances in policy evaluation techniques, including those with continuous and dynamic treat-
ments. We view the flexibility and transparency of our approach as the main reason for using
it in empirical practice.

5 Using individual estimates as a regressor (RHS)

So far, our analysis has been focused on using τ̂i,k as a LHS variable in the regression-based
analysis. As we have seen in the previous section, this econometric exercise can be useful for
policy evaluation. In this section, we focus on using τ̂i,k as a RHS variable. There are two
problems that we need to address in this case. First, we need to explicitly account for the
non-vanishing measurement error discussed in Section 2.4, which otherwise would lead to
attenuation bias. Second, we might need to adjust for the correlation of the measurement
error with the outcome we put on the LHS.

We start this section by developing a systematic way of addressing the first problem and
discussing a way of solving the second one in a particular situation where the outcome of
interest is τi,Ei,k itself. As a byproduct of our analysis, we develop unit-specific measures of
conditional variance, which we then investigate empirically. Finally, we apply ourmethodology
to analyze the intergenerational transmission in CPs.
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5.1 Methodology

In this section, we discuss the additional assumptions needed to adjust for the measurement
error. Our identification argument and estimating strategy is based on applying and extending
the approach from Arellano and Bonhomme (2012).

Object of interest

To formalize our goal in this section, we first describe the object of interest. We focus on the
coefficient β⋆ in the following partial linear model:

(β⋆, f ⋆) := arg min
β,f∈F

E[
(
Zi − f(Xi, Ei)− β⊤τ i,Ei

)2 |Str
i = 1], (11)

where τ⊤
i,Ei

:= (τi,Ek,−K , . . . , τi,Ei,H) and F includes all possible functions of (Xi, Ei). Estimat-
ing (11) can be useful for different applications. For example, consider an intergenerational
comparison, where variable (Xi, Ei, τ i,Ei

) come from the generation of parents, while the out-
come Zi is recorded for a generation of children. Coefficient β⋆ then describes the correlation
between Zi and τ i,Ei

after adjusting for observed characteristics of parents. Indeed, the CP
literature had been interested in the intergenerational transmission of CP as a measure of so-
cial norms stickiness across generations (Kleven et al., 2019b). More broadly, while the study
of intergenerational mobility (IGM) has been focused on directly observed outcomes such as
earnings, education, and wealth; a recent strand of the literature has attempted to measure
the IGM in more abstract and self-constructed/imputed objects such as firm wage premium
(Zohar and Dobbin, 2024; Engzell and Wilmers, 2024), skill (Cunha and Heckman, 2007),
and financial literacy (Black et al., 2020).

By the standard Frisch-Waugh-Lovell Theorem (FWL Theorem), we can write the expres-
sion for β⋆:

β⋆ =
(
E[V[τ i,Ei

|Xi, Ei]|Str
i = 1]

)−1 E[(τ i,Ei
− E[τ i,Ei

|Xi, Ei])Zi|Str
i = 1]

As a result, to identify β⋆ we need to identify the expectation of the conditional variance of τ i,Ei

and the expectation of the conditional covariance of τ i,Ei
and Zi for the subpopulation of the

treated units. We start by identifying the denominator, i.e., the expectation of the conditional
variance:

E[V[τ i,Ei
|Xi, Ei]|Str

i = 1].
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If we use τi,k instead of τi,Ei,k then the result is guaranteed to be biased:

V[(τi,−H , . . . , τi,K)
⊤|Xi, Ei] = V[τ i,Ei

|Xi, Ei] + V[εi|Xi, Ei]+

E[εiτ⊤
i,Ei

|Xi, Ei] + E[τ i,Ei
ε⊤i |Xi, Ei],

where ε⊤i = (εi,−K , . . . , εi,H). Assumption 2.2 guarantees that both cross-product terms are
equal to zero,

E[τ i,Ei
ε⊤i |Xi, Ei] = 0,

and thus, we have

V[(τi,−H , . . . , τi,K)
⊤|Xi, Ei] = V[τ i,Ei

|Xi, Ei] + V[εi|Xi, Ei]. (12)

Since τi,k is observed up to asymptotically vanishing estimation error ξi,k it follows that we can
estimate the LHS of equation (12). To use this estimator for V[τ i,Ei

|Xi, Ei] we need to adjust
it for the bias term V[εi|Xi, Ei].

Identification and estimation

Without further restrictions, it is impossible to identify V[εi|Xi, Ei]. To solve this problem, we
make another assumption.

Assumption 5.1. (Restricted heteroskedasticity)
Conditional variance of ϵ⊤i =

(
ϵi,T0,i

, . . . , ϵi,T1,i

)
only varies with Xi,

V[ϵi|Xi, τ i, αi] = V[ϵi|Xi].

We use Assumption 5.1 to identify the variance matrix element-by-element. In particular,
fix an event time e, and k, k′ ∈ {−K, . . . , H}, where k can be potentially equal to e. Consider
a unit i that is still far enough from it’s event Ei, such that Si = 1, Ei > e + max{k, k′} +K,
and e+max{k, k′}+K ∈ T s

i . Using the notation introduced in Section 2 we can define:

εi,e,k := ∆Yi,e,k −∆λe,k(Xi) =

(
ϵi,e+k −

∑
T0,i≤l<e−K ϵi,l

e− T0,i −K

)
,

and analogously for k′. We use these errors to compute a covariance function:

σε
e,k,k′(x) := E[εi,e,kεi,e,k′ , |Xi = x, Scont

i (e+max{k, k′}+K) = 1, e+max{k, k′}+K ∈ T s
i ].
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Algorithm 2: Variance construction

Data: D, K,H, k, k′,
{
∆λ̂e,k,∆λ̂e,k′

}
e∈E

, {τ̂i,k, τ̂i,k′}i∈Str F , {ωi}i∈S
Result: {σ̂i,k,k′}i∈Str , {σ̂obs

i,k,k′}i∈Str

1 for e ∈ E do
2 Define

τ̂e,k = argmin
f∈F

∑
i∈Str(e)

(τ̂i,k − f(X))2ωi,

and analogously define τ̂e,k′;
3 for i : Scont

i (e+max{k, k′}+K), e+max{k, k′} ∈ T s
i do

4 Define
ε̂i,e,k := ∆Yi,e,k −∆λ̂e,k(Xi),

and analogously for k′;
5 end
6 Define

σ̂ε
e,k,k′ = argmin

f∈F

∑
i∈Scont(e+max{k,k′}+K),

e+max{k,k′}+K∈T s
i

(ε̂i,e,kε̂i,e,k′ − f(Xi))
2 ωi

for i ∈ Str(e) do
7 Define σ̂obs

i,k,k′ := (τ̂i,k − τ̂e,k(Xi))(τ̂i,k′ − τ̂e,k′(Xi));
8 Define σ̂i,k,k′ := σ̂obs

i,k,k′ − σ̂ε
e,k,k′(Xi);

9 end
10 end

Assumption 2.2 and 5.1 then guarantee

(V[εi|Xi, Ei])k,k′ = σε
Ei,k,k′

(Xi).

Repeating these steps for all values k, k′ ∈ {−K, . . . , H} we identify the conditional variance
matrix of εi. Using (12) we can thus identify the conditional variance matrix V[τ i,Ei

|Xi, Ei],
and its expectation E[V[τ i,Ei

|Xi, Ei]|Str
i = 1].

Algorithm 2 describes an implementation of this identification argument in practice. This
algorithm uses τ̂i,k and τ̂i,k′ delivered by Algorithm 1 as inputs. We rely on them to estimate
the conditional mean functions τ̂e,k(x) and τ̂e,k′(x) (Step 2), and to construct unit-specific co-
variance measures σ̂i,k,k′ (Step 7). The implementation of the latter step relies on estimates
σ̂ε
e,k,k′(x) (Step 6), which is based on ε̂i,e,k and ε̂i,e,k′, which are empirical analogs of εi,e,k and

εi,e,k (Step 4). The algorithm delivers unit-specific covariance measures σ̂i,k,k′ which we can
average over all units in Str to estimate the corresponding element of E[V[τ i,Ei

|Xi, Ei]|Str
i = 1].
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We now turn to the numerator of β, E[(τ i,Ei
− E[τ i,Ei

|Xi, Ei])Zi|Str
i = 1]. By definition

τi,k − τEi,k(Xi) = τi,Ei,k − τEi,k(Xi) + εi,k,

and thus as long as E[εi,kZi|Str
i = 1] = 0, we can identify the covariance:

E[(τi,Ei,k − τEi,k(Xi))Zi|Str
i = 1] = E[(τi,k − τEi,k(Xi))Zi|Str

i = 1].

The assumption that the measurement error εi,k is uncorrelated with Zi is a substantive one
and is not implied by any of the other assumptions we made in the paper. In practice, its
validity depends on the nature of the outcomeZi. We view this assumption as reasonable in the
context of intergenerational comparisons, which amounts to assuming that the measurement
error in the parents’ generation is uncorrelated with the measurement error in the children’s
generation.

When this assumption is valid, then we can construct β̂ by first constructing the unnormal-
ized coefficient that ignores the measurement error,

(β̂un, f̂) := arg min
β,f∈F

∑
i∈Str

(Zi − f(Xi, Ei)− β⊤τ̂i,k)
2ωi,

and then adjusting it:
β̂ := Σ̂−1Σ̂obsβ̂un,

where

(Σ̂)k,k′ :=

∑
i∈Str σ̂i,k,k′ωi∑

i∈Str ωi

, (Σ̂obs)k,k′ :=

∑
i∈Str σ̂obs

i,k,k′ωi∑
i∈Str ωi

.

Discussion and validation

We now discuss how we can validate Assumption 5.1 and what happens if it fails. We start
with the latter question, and for simplicity, ignore covariates Xi, assume that Ti = {0, 1, 2},
and set K = 0 and H = 1. In this case, the object of interest is τ i,1 = (τi,1,0, τi,1,1). For every
unit i and k ∈ {0, 1} we compute

∆Yi,k,1 = Yi,1+k − Yi,0.

By definition, we have for i such that Ei = 1:

τi,k = ∆Yi,k,1 − E[∆Yi,k,1|Ei > 1 + k].
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Similarly, we have for i such that Ei > 1 + k

εi,k,1 = ∆Yi,k,1 − E[∆Yi,k,1|Ei > 1 + k].

For k, k′ ∈ {0, 1} we compute the elements of the variance matrix using the following formula:

C[τi,k, τi,k′ |Ei = 1]− C[εi,k,1, εi,k′,1|Ei > max{k, k′}].

Since constant shifts do not affect the covariance, we can equivalently write the previous
expression as

C[∆Yi,k,1,∆Yi,k′,1|Ei = 1]− C[∆Yi,k,1,∆Yi,k′,1|Ei > max{k, k′}]. (13)

Now, suppose that E⋆
i is assigned randomly, as it would be in a randomized experiment.

Then, we can view expression (13) as a treatment effect on the appropriately transformed
outcomes. In particular, if the event time has no impact on the underlying outcomes, then
this difference is equal to zero. Motivated by this insight, we can consider an alternative
comparison:

V[∆Yi,0,1|Ei = 2]− V[∆Yi,0,1|Ei > 2].

If E⋆
i is randomly assigned and has no anticipation effects, then this difference should be equal

to zero. It is instructive to compare this expression to the corresponding version for the means,

E[∆Yi,0,1|Ei = 2]− E[∆Yi,0,1|Ei > 2],

which corresponds to the standard comparison of average pretreatment outcomes. In empiri-
cal practice, this comparison is routinely used to test for “parallel” trends.

To implement this logic in practice, users simply need to execute Algorithms 1 and 2 with
a larger value of K. For example, suppose that we believe that Assumption 2.1 is satisfied for
K = 0, i.e., there are no anticipation effects. We then can run Algorithms 1 and 2 for K > 0,
e.g., K = 3. We then can use τ̂i,k and σ̂i,k,k′ for k, k′ ∈ {−K, . . . ,−1} for testing. In particular,
comparing the average of τ̂i,k to zero corresponds to the standard testing for the pretrends
while comparing the average of σ̂i,k,k′ to zero corresponds to the new test.

5.2 Estimating the variance in child-penalties

As we discussed in the last section, estimating the variance in CP has an empirical value for
when one wants to use the unit-level estimates in the RHS. However, the variance in unit-level
event studies might have an economic value by itself. For example, the variance in CP might
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reflect the variability in labor supply post-childbirth, going beyond the means.
To investigate this, we apply Algorithm 2 to the same dataset we used in the previous

two sections, with one additional sample restriction. The variance estimation is particularly
sensitive to outliers, with a handful of extreme observations potentially changing the final
result. To address this, we drop from the sample all individuals whose earnings were among
the top 1% of their birth cohort at any time during their career. We focus on the variance
components of the covariance matrix σ̂2

i,k := σ̂i,k,k First, we normalize σ̂2
i,k:

σ̃2
i,k :=

σ̂2
i,k(∑

j:Ej=Ei,Gj=Gi,Bj=Bi
Ŷ c
i,k

ng,b,e

)2 , (14)

We use these coefficients to conduct the analysis similar to the one performed in Section 3. To
convert these results to a meaningful scale, we take the square root of the resulting estimates,
thus effectively computing the coefficient of variation (CV).

The results of this variance in CP for earnings present three interesting patterns (Figure VI).
First, we can see the variance in earnings for me is increasingmonotonically as wemove further
away from the event of giving birth (child’s age). Importantly, while there is no difference
between the variance three years pre-birth and the years before that (the baseline estimation),
there is an increase in the variance starting already two years before the timing of birth.
Second, while pre-birth the increase in the variance in CP is similar across men and women,
they start diverging in the moment of birth, with women showing a decrease and stagnation
in their earnings variance post-birth. This result is consistent with the naive k-means exercise
in Figure Ib. Third, we can see that the measrument error correction works well for older
parents (e.g., there is no differential variance up to three periods pre-birth), while this is not
the case for younger parents in their late twenties. This is consistent with the results in Figure
A.1a and serves as a diagnostic test for Assumption 5.1, suggesting again that we should focus
on individuals who become parents in their early thirties.

We interpret these results in the following way. The wide heterogeneity in labor earnings
pre-birth suggests potential diverging reasons for selection into parenthood: some choose the
timing of parenthood since they lost/left a job and are ready to let their partner focus on
their career while they raise the kid. Some possibly found a job and felt a greater sense of
job security, leading them to opt into parenthood. These patterns are perhaps not gendered
up until the later part of the career, when there are greater returns from intra-household
specialization.

One side benefit of constructing unit-level measures of conditional variance and covariance
is that we can use them to investigate the persistence in the CP. In particular, we consider
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estimating the following regression coefficient

β0,5 =
E[E[(τi,Ei,5 − E[τi,Ei,5|Xi, Ei])τi,Ei,0|Xi, Ei]|Str

i = 1]

E[Vτi,Ei,0|Xi, Ei]|Str
i = 1]

,

This object is identified based on our previous result for the covariance matrix, and using the
estimated covariance, a simple estimator of β is given by

β̂0,5 :=

∑
i∈Str σ̂i,5,0∑
i∈Str σ̂2

i,0,0

.

We compute this estimator and find a coefficient around 1 for both men and women, which
suggests that the individual CP are highly persistent.

5.3 Estimating the intergenerational mobility in child penalties

There are several relevant applications that illustrate how we can use unit-level estimates as
regressors on the right-hand side (RHS). A natural application in the context of the CP is the
intergenerational mobility (IGM) in CP, an object the literature had shown interest in as a
measure of the importance of social norms in shaping the CP (Kleven et al., 2019b). However,
to implement such an exercise empirically requires a long panel of individuals, labor-market,
and fertility decisions that link parents and children across generations. Unfortunately, the
Dutch data does not allow us to go far back enough to have meaningful labor-market outcomes
for both parents and children’s generations.

In order to illustrate how our method allows the CP-IGM estimation, we shift our analysis
in this section to a longer panel dataset provided by the Panel Study of Income Dynamics
(PSID). The PSID data structure encompasses annual data from 1968 to 1996 and biennial
data from 1997 to 2021, allowing us to explore the evolution of CP across generations. Given
the temporal structure of the dataset, the analysis is simplified into three steps:

Step 1: Separately estimate the parents and children’s individual CP

We match parents and children using the Family Identification Mapping System (FIMS) and
further limit our analysis to individuals with available outcome variables. For the parents’
generation, our analysis spans the years 1968 to 1997, focusing on individuals who gave birth
in 1970 or later. Similarly, we consider the children’s generation, examining outcome variables
from 1990 to 2021, with data collected biennially. We restrict this group to individuals born in
1992 or later. For both parents’ and children’s samples, we limit to individuals with childbirth
occurring between the ages of 22 and 40 and trim individuals in the top 1% of earnings for
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each year. Finally, we separately estimate CP using Algorithm 1 by gender and education.
Resulting in the estimated individual CP for the children (τ̂i,k) and the parents (τ̂p(i),k).

Step 2: Measurement error correction

One naive way to estimate the CP-IGM is to run the following regression between the CP of
daughters and mothers averaged across all estimated years post-birth (k):

¯̂τi = β0 + βIGM · ¯̂τp(i) + ϵi

However, as we discussed extensively before, individual-level CP estimates suffer frommea-
surement error, which creates an attenuation bias in βIGM when used on the RHS. Specifically,
we are concerned with the measurement in the parents’ estimates. Therefore, we implement
Algorithm 2 for the variance of individual-level CP within the parents’ generation, similar to
the procedure discussed in Section 5.2, resulting in the corrected variance σ̂2

p(i).

Step 3: Estimation of the intergenerational mobility coefficients

Finally, we manually calculate βIGM so we can use the adjusted variance and thus correct the
attenuation bias:

βIGM :=
Cov(¯̂τi, ¯̂τp(i))

σ̂2
p(i)

We compute the standard error for this coefficient using the weighted bootstrap discussed in
Section 2.3.

Results and discussion

We begin by plotting the scatter plot of daughters and mothers CP in Figure VII, using the
estimates from Step 1. We focus onmothers and daughters since it is more reasonable for social
norms to transmit from mothers to daughters rather than to sons (although these are feasible
to estimate as well). The figure suggests some correlation, although it is hard to asses merely
by staring at it. Therefore, we report in blue the results from the naive unadjusted coefficient
(0.148), and in orange, the coefficient corrected for the measurement error, following the
estimation procedure in Steps 2-3 above. We find a CP-IGM coefficient of 0.236, implying a
10% increase in mothers’ CP is associated with a 2.36% higher CP for the daughters. This
result suggests an economically important role of the transmission of social norms between
generations.
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Given the PSID’s small sample size, it is important to take these specific estimates with
a grain of salt. We believe that our estimates are very noisily estimated given the very small
sample of merely 261 daughters and mothers pairs (due to our demanding sample restric-
tions). This, in turn, might imply that our variance correction is very crude. Therefore, we see
this exercise as a proof of concept, which could be estimated in other CP studies using larger
administrative data.

6 Conclusion

In this paper, we introduce a novel framework for analyzing unit-level effect heterogeneity in
event studies, specifically applied to the study of child penalties (CP). Our method builds upon
existing econometric techniques to offer a more nuanced understanding of how individuals
are differently affected by events and policies, particularly in the context of childbirth and
childcare provision.

By developing an estimation algorithm and employing a comprehensive dataset from the
Netherlands, we document significant heterogeneity in CP and assess the impact of childcare
policies on labor market outcomes. Our empirical exploration into the non-monotonic impacts
of childcare provision policies on CP provides valuable insights into the complexity of policy
effectiveness. We demonstrate that the success of such policies in mitigating CP is contingent
on a multitude of factors, including baseline childcare levels and the specific dynamics of labor
market participation among men and women. Moreover, our methodology enables the use of
individual-level CP estimates as a regressor. This flexibility enriches the toolkit available to
researchers, opening up new avenues for investigating the intergenerational transmission of
CP and other user-constructed measures.

Ourmethodological and empirical contributions extend the scope of event study analysis by
facilitating the direct measurement of unit-level effects and adjusting for biases associated with
noisy estimates. The open-source tool ’unitdid’ we provide enables researchers to apply our
approach across various settings, enhancing the precision and depth of policy evaluation and
economic research. Importantly, our findings underscore the necessity of individualized policy
analysis, revealing how baseline conditions and specific individual circumstances significantly
influence the effectiveness of interventions aimed at mitigating the CP.

By advocating for a shift towards more granular and informed analyses, this paper sets
a new direction for economic research and policy-making. It reveals the limitations of one-
size-fits-all policies and highlights the need for targeted interventions that consider the varied
needs and circumstances of different population segments.
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Tables

Table I: Low Semi-Elasticity of Childcare Provision and Earnings

Men Women

CP in Earnings CP in Participation CP in Earnings CP in Participation

Childcare Index 0.091 -0.036 0.066 0.014
(0.073) (0.040) (0.038) (0.018)

Observations 263904 263904 262490 262490
R2 0.01 0.00 0.05 0.01
FE: Year at Birth X X X X
FE: Age at Birth X X X X
FE: Municipality X X X X

This table presents the elasticity of child-penalty to childcare provision following Equation 8.
Each regression includes fixed effects for the year of birth, age at birth, and municipality. Stan-
dard errors are clustered by year and municipality at birth. ** p < .01; * p < .05; +p < .1.
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Figures

Figure I: High Heterogeneity in Child-penalties (CP)

(a) Distribution of Individual CP

(b) Different CP Paths (K-Means)

Notes: These figures presents the variation in child-penalty estimates (CP). Figure Ia plots the marginal distribu-
tions of τ̃i,k from Equation 6 for earnings, by time relative to first childbirth and genders, pooled across all birth
cohorts. The dots represent the mean of each distribution. Figure Ib shows the results from applying a K-means
algorithm to the vector of estimated child penalties τ̃ i and classify all individuals of the same gender into three
groups.
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Figure II: Avg. CP Decomposition by Birth Cohort and Age at First Childbirth

Notes: This figure presents the CP estimates aggregated and decomposed by observables of interest – age of first
childbirth and birth cohort, as described in Section 3.2. All estimates are normalized to the CP of the 1980 birth
cohort.

Figure III: Continuous and discrete variation of childcare supply expansion

(a) Continuous treatment (b) Simplified 2× 2 DiD design

Notes: These figures presents the variation in childcare supply per preschool-aged children across municipalities,
from 1999 to 2016. Our childcare supply index (CCI) for each municipality is calculated by dividing the number
of childcare jobs in a given municipality m and year t (N jobs

m,t ) by the number of children under five years of age
in the same locality (N children

m,t ). The vertical line illustrates the timing of the 2005 Dutch childcare expansion
reform. Panel (a) illustrates the substantial variation in childcare availability between different municipalities
and the large increase due to the 2005 reform of childcare expansion. The dot represents the mean CCI in a
given year where’s the shaded area represent the distribution of CCI across municipalities in that year. Panel (b)
illustrates the equivalent simplified 2×2 DiD design, where the time variation is binary (grey area) and treatment
is binary (see Section 4.4). The pre-treatment period includes individuals who gave birth in 2000, considering
the Child Penalty (CP) for k = 0, . . . , 5 as fully non-treated. The post-treatment period comprises individuals
who gave birth in 2011, with CP for k = 0, . . . , 5 deemed fully treated. Treatment is defined as municipalities
with an expansion of at least 10 percentage points in CCI between pre and post periods.
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Figure IV: Non-parametric treatment-effects of childcare provision expansion on child-
penalties

(a) Earnings

(b) Participation

Notes: This figure presents the the effect of childcare provision expansion on child-penalties (CP). We split the
estimation between men (blue) and women (orange). Each dot represents a binscatter of the non-parametric
treatment effects estimated from equation 9. We present the results for each estimate of the year relative to birth
(k). We estimate individual-CP following the empirical strategy is described in Algorithm 1. Our childcare supply
index (CCI) for each municipality is calculated by dividing the number of childcare jobs in a given municipality
m and year t (N jobs

m,t ) by the number of children under five years of age in the same locality (N children
m,t ).
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Figure V: Large qualitative differences between ours’ and the common policy evaluation
method

(a) Earnings

(b) Participation

Notes: This figure presents the discrete diff-in-diff estimates of the effects of childcare exapnsion on the child-
penalty using different estimation strategies. Panel (a) presents the results for earnings, while Panel (b) presents
the results for participation. The aggregation process in Step 2 of our approach generates four distinct panels (see
Figure A.3). We then perform a diff-in-diff analysis on each of the corresponding dots in the panels of Figure A.3.
Conversely, the common DiD specification, conceptually similar to ours and outlined in Equation 10, produces
results illustrated in the right panels.
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Figure VI: Distributional properties – Variance in child-penalties

Notes: This figure presents the impact of childbirth on the earnings variability among different
parents, split by gender and age of giving birth. We adopt the steps in Algorithm 2 for the case
of the child-penalty to implement this estimation, as described in Section 5.2.

Figure VII: Intergenerational mobility in CP: mothers vs daughters

Notes: This figure presents a scatter plot and the correlation between child-penalties (CP) across generations.
We take the average individual-CP across five years post birth for mothers and daughters. We follow the em-
pirical strategy described in Section 5.3. The blue line represents the estimated coefficient from regressing the
individual-CP of the daughters on their mothers’ CP, adjusting for ME. The orange line represent the correspond-
ing coefficient, adjusted for the ME based on the estimation procedure in Steps 2-3 of Section 5.3.
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A Figures and tables

Figure A.1: Avg. CP by Birth Cohort and Age at First Childbirth

(a) Aggregation by Age at First Childbirth

(b) Aggregation by Birth Cohort

Notes: This figure presents the CP estimates aggregated by observables of interest – age of first childbirth and
birth cohort, as described in Section 3.2. Panel (a) reports the average CP across age at first childbirth at all
horizons. Similarly, Panel (b) reports the average CP across birth cohorts at all horizons post-birth.
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Figure A.2: Childcare provision levels are correlated with lower child-penalty

(a) Earnings

(b) Participation

Notes: This figure presents the correlation between child-penalties (CP) and childcare provision index (CCI). We
aggregate the estimated individual-CP at the municipality times year-of-conception level, following the empirical
strategy described in Section 3.2 and plot them against the childcare provision index (CCI). The line represents
the estimated coefficient from regressing the individual-CP on CCI. We divide the estimation between men in
blue and women in orange. We present the results for each estimate of the year relative to birth (k). Figure A.2a
presents the correlations using CP estimates for earnings. Similarly, Figure A.2b presents the correlations using
CP estimates for participation. Our childcare supply index (CCI) for each municipality is calculated by dividing
the number of childcare jobs in a given municipality m and year t (N jobs

m,t ) by the number of children under five
years of age in the same locality (N children

m,t ).
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Figure A.3: Child-penalty by treatment and post status

(a) Earnings

(b) Participation

Notes: This figure presents the child-penalty estimates split by treatment status, and pre- and post- the childcare
policy expansion. Panel A.3a presents the results for earnings, while Panel A.3b presents the results for participa-
tion. The pre-treatment period includes individuals who gave birth in 2000, considering the Child Penalty (CP)
for k = 0, . . . , 5 as fully non-treated. The post-treatment period comprises individuals who gave birth in 2011,
with CP for k = 0, . . . , 5 deemed fully treated. Treatment is defined as municipalities with an expansion of at
least 10 percentage points in CCI between pre and post periods (see Figure IIIb and Section 4.4).
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Figure A.4: Large differences due to downward selection bias (Unit FE)

(a) Earnings

(b) Participation

Notes: This figure presents the discrete diff-in-diff estimates of the effects of childcare exapnsion on the child-
penalty using different estimation strategies, illustrating the sensitivty to unit fixed effect. Panel (a) presents the
results for earnings, while Panel (b) presents the results for participation. Both panels The aggregation process
in Step 2 of our approach generates four distinct panels (see Figure A.3). We then perform a diff-in-diff analysis
on each of the corresponding dots in the panels of Figure A.3. The left panels show our results with unit fixed
effect, while the right panels show the results without.
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B Additional theoretical derivations

Causal model for policy analysis

In this section we sketch a causal model behind Assumption 4.2. We start by assuming that
the potential outcomes can be separated into two parts:

τi,e,k(w) = αi,k(e) + γi,k(w). (B.1)

This restriction eliminates state dependence: the policy’s effect is the same regardless of the
underlying event time. Note that it still allows for unrestricted heterogeneity in effects, so in
the sample, the policy’s effect at realized event times can be different. In other words, we
resolve the standard trade-off between state dependence and unobserved heterogeneity in
favor of the latter.

Next, we split αi,k(e) into the systematic and residual part:

αi,k(e) = αk(Xi, Ei, e) + νi,k(e), E[νi,k(e)|Xi, Ei] = 0.

Note that this separation is mechanical and does not impose any restrictions on the correlation
between Ei and αi,k(e). As a result, it is not entirely standard, because the term αk(Xi, Ei, e)

depends on both observed Ei and potential e. If we were to assume that Ei is as good as
randomly assigned given Xi, then αi,k(Xi, Ei, e) would have depended solely on e.

Next, we make a functional form assumption and evaluate the resulting components at Ei:

α(Xi, Ei, e) = βk(Xi) + µk(Ei, e) ⇒ α(Xi, Ei, Ei) = βk(Xi) + µk(Ei, Ei). (B.2)

This assumption imposes a restriction on the underlying effect heterogeneity, assuming that
it varies only with respect to the observed event time. It is not the only possible assumption,
and in some applications, other restrictions on α(Xi, Ei, e) can be appropriate.

We abuse notation and define µk(Ei) := µk(Ei, Ei); we also define νi,k = νi,k(Ei). Straight-
forward verification implies that

E[νi,k|Ei, Xi] = 0. (B.3)

Since W̃i,k is a deterministic function of Xi, Ei we can combine all the restrictions and arrive
at the model we have in Assumption 4.2:

τi,Ei,k(W̃i,k) = βk(Xi) + µk(Ei) + γi,k(W̃i,k) + νi,k, E[νi,k|Xi, Ei, W̃i,k] = 0.
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